文章

使用C#(sharp)-OpenCv(仅)来推理scrfd模型实现人脸检测

如何使用

已发布到nuget 源码在github

1
dotnet add package FaceTrain.OpenCV
1
2
3
4
5
6
7
8
//读取模型文件
var modelBytes = File.ReadAllBytes("Resource\\Model\\SCRFD\\scrfd_10g_kps.onnx");
//读取要检测的图片
var imgBytes = File.ReadAllBytes("Resource\\Img\\test.png");
//实例化网络
using var net = new FaceTrain.OpenCV.SCRFD(modelBytes);
//执行推理拿到结果
var faces = net.Detection(imgBytes);

模型下载

官方模型是用pytorch框架训练的,需要使用scrfd2onnx.py将模型转换下 作者已经转换好了可以直接下载使用

scrfd2onnx踩坑经历

测试用例

分别写了从摄像头获取图片以及从文件夹获取图片进行测试

源码解读

  1. 模型为[1,3,640,640]的输入,将图片等比例缩放
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    
     using Image<Rgb24> image = Image.Load<Rgb24>(img);
     //图片缩放
     image.Mutate(x =>
     {
         x.Resize(new ResizeOptions
         {
             Size = new Size(dimensions[2], dimensions[3]),
             Mode = ResizeMode.Pad,
         });
     });
    
  2. Csharp使用以下代码来实现opencv的cv.blobFromImage函数

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    
     // opencv
     var blob = CvDnn.BlobFromImage(mat, 1 / 128.0, new Size(inputWidth, inputHeight), new Scalar(127.5, 127.5, 127.5), true, false);
    
     // csharp
     float mean = 127.5f, stddev = 128;
     image.ProcessPixelRows(accessor =>
     {
         for (int y = 0; y < accessor.Height; y++)
         {
             Span<Rgb24> pixelSpan = accessor.GetRowSpan(y);
             for (int x = 0; x < accessor.Width; x++)
             {
                 processedImage[0, 0, y, x] = (pixelSpan[x].R - mean) / stddev;
                 processedImage[0, 1, y, x] = (pixelSpan[x].G - mean) / stddev;
                 processedImage[0, 2, y, x] = (pixelSpan[x].B - mean) / stddev;
             }
         }
     });
    
  3. 结果去重(一张人脸会重复检测多次保留Score最高的哪个)
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    
     public static List<FaceBox> NMSBoxes(List<FaceBox> boxes, float overlapThreshold)
     {
         // 根据置信度对边界框进行排序(降序)
         boxes.Sort((box1, box2) => box2.Score.CompareTo(box1.Score));
         List<FaceBox> selectedBoxes = new();
         while (boxes.Count > 0)
         {
             FaceBox currentBox = boxes[0];
             selectedBoxes.Add(currentBox);
             boxes.RemoveAt(0);
             float areaCurrent = (currentBox.Right - currentBox.Left) * (currentBox.Bottom - currentBox.Top);
             for (int i = 0; i < boxes.Count; i++)
             {
                 FaceBox candidateBox = boxes[i];
    
                 float x1 = Math.Max(currentBox.Left, candidateBox.Left);
                 float y1 = Math.Max(currentBox.Top, candidateBox.Top);
                 float x2 = Math.Min(currentBox.Right, candidateBox.Right);
                 float y2 = Math.Min(currentBox.Bottom, candidateBox.Bottom);
    
                 float intersectionArea = Math.Max(0, x2 - x1) * Math.Max(0, y2 - y1);
    
                 float IoU = intersectionArea / (areaCurrent + (candidateBox.Right - candidateBox.Left) * (candidateBox.Bottom - candidateBox.Top) - intersectionArea);
                 if (IoU > overlapThreshold)
                 {
                     boxes.RemoveAt(i);
                     i--;
                 }
             }
         }
         return selectedBoxes;
     }
    

    错误笔记

本文由作者按照 CC BY 4.0 进行授权